
Published in the IEEE Proceedings of the International Conference on Parallel Computing in Electrical
Engineering (PARELEC 2000), 27-30 August 2000, Trois-Rivieres, Quebec CA, pp. 13-17.

C++2MPI: A Software Tool for Automatically Generating MPI Datatypes
from C++ Classes.

 Dr. Roger Hillson
 Naval Research Laboratory
 email: hillson@ait.nrl.navy.mil

 Dr. Michal Iglewski
 University of Quebec at Hull
 email: iglewski@uqah.uquebec.ca

 ABSTRACT

The Message Passing Interface 1.1 (MPI 1.1)
standard defines a library of message-passing
functions for parallel and distributed computing. We
have developed a new software tool called C++2MPI
which can automatically generate MPI derived
datatypes for a specified C++ class. C++2MPI can
generate data types for derived classes, for partially
and fully-specialized templated classes, and for
classes with private data members. Given one or more
user-provided classes as input, C++2MPI generates,
compiles and archives a function for creating the MPI
derived datatype. When the generated function is
executed, it builds the derived MPI datatype if the
datatype does not already exist, and returns the value
of an MPI handle for referencing the datatype. PGMT
(Processing Graph Method Tool) is a set of
application program interfaces for porting the
Processing Graph Method (PGM), a parallel
programming method, to diverse networks of
processors. C++2MPI was developed as a component
of PGMT, but can be used as a stand-alone tool.

Steerin
g Angl

e

Acous t i c
ArrayShading

Weights

NSE
Windo
w Size

Acoustic Array
Data in from file

k -
Overlap

B lock
s i z e k input

t o k e n s

R

Cap=
1

R

Lower
Freq

Cap=
1

INT

GV

Queue

PACK

FFT
R-C

Hannin
gWindo
w

SMUL

Beam
Form CVMAG NSE

Displa
yCompres

s

Integer
to-
Real Token

:REAL[n]
Token
:REAL[Phones,
n]

Token
:INT[Phones, n
timesamples per
phone]

Token
:REAL[k,
n]

Token
:CMPLX[N/2=
k

xn/2]

Token
:CMPLX[Phones,
N/2]

Token
:CMPLX[Nfr]

Token
:REAL[Nfr]

Token
:INT[Nfr]

Token
:REAL[Nfr]

Token
:CMPLX[N/2]

Token
:CMPLX[N/2]

FANIN

P13 P9

INT

C
R

REAL

Cv

F s

P8 P7 P6 P5

P4 P3 P2 P1

Pn Priority=n

FANOUT

FANOUT

FANOUT

P10

P10

P12

Exten
dT o k e
n

Exten
dT o k e
n

Extens io
n Fac to

r

P11

P11

Array
Tab l

RO
CO

0

0Cap=1

Cap=1

Cap=51
2

1: Introduction to PGM and PGMT

The Processing Graph Method (PGM) is a
language-independent data-flow method developed at
the Naval Research Laboratory (NRL) [1, 2]. The
intent of the PGM approach is to reduce development
time for parallel and distributed programs and to
increase application portability across diverse
platforms. PGM enables the application-developer to
specify his application as a data-flow graph, an
approach which exposes the parallelism inherent in
the program [Figure 1]. A PGM graph consists of
nodes connected by directed arcs which specify the
path and direction of data flow within an application.
A PGM node is either a place or a transit ion .
Transitions are the computational elements of the
graph, while the places store data. The data are
manipulated in the form of tokens, which are packets
of strongly-typed data. When a transition executes, it
will typically read and consume a token from one or
more upstream places, and produce one or more
tokens to each of its output places.

1.1: PGM Families and Base Types.

The fundamental PGM data structure conveyed by
tokens is called a family [2]. A family is a hierarchical
data structure of elements of some specified base-type.
A base type is also called a leaf-node type. The base
type cannot be a pointer, but will typically be a
predefined datatype in the high-order language (HOL)
chosen for a specific implementation of PGM. In C or
C++, for example, the base type of a family could be
int, float, or long. A user may also define his own
homogeneous or heterogeneous PGM base type as an
aggregate data structure supported by the HOL. The
data structure could be a C structure, a C++ class, or a
Pascal record.Figure 1 - PGM Dataflow

Graph [1]

1.2: PGMT

PGM has been implemented on both serial and
parallel computer architectures, but the cost of porting
PGM to a new computer architecture is high. The
Processing Graph Method Tool (PGMT) is a set of
software application program interfaces (APIs)
designed to greatly reduce the cost of porting PGM to
a new computer system [1]. PGMT is written in C++,
and uses many of the functions of the C++ standard
template library (STL). PGMT includes a PGM
Graphic User Interface (GUI); a Graph State File
(GSF) for saving both the graph layout and the PGM
graph parameters; a GSF-to-C++ translator; an
MPI-based communications library (referred to as
middleware); decomposition functions for partitioning
the graph into concurrent processes; and runtime
functions for scheduling transition executions, and for
reassigning transitions dynamically to different
processors.

1.3 PGMT and MPI 1.1

The PGMT communication library is based on the
Message Passing Interface 1.1 (MPI 1.1) standard [3].
MPI 1.1 has been widely implemented on diverse
parallel processors, thus facilitating PGMT portability
across platforms. Although PGMT testing has been
conducted primarily on a distributed network of Sun
and SGI workstations, we have also tested
components of the PGMT communications library on
an SGI Origin 2000, and a Hewlett-Packard Convex
Exemplar. PGMT is implemented in C++, although
PGM proper is language independent.

The MPI communication functions (e.g. send, receive,
broadcast, scatter, gather, global maximum, global
minimum) are strongly typed: each function call
requires an explicit argument specifying the MPI
datatype being sent or received. MPI provides built-in
datatypes for the common scalar arithmetic types such
as int [i.e. MPI_INT] and float [i.e MPI_FLOAT].
MPI also enables a user to define his own MPI
datatype as a composite of one or more rudimentary
MPI datatypes. A derived MPI datatype is an opaque
object comprised of a sequence of ordered pairs of (i)
either basic or derived datatypes and (ii) integral byte
displacements from the beginning of a hypothetical
send buffer [see 3, sect. 3.12]. MPI provides functions
for building derived MPI datatypes, and for assigning
values to the MPI handles which reference them. The
integer displacements are specified as offsets into an
object instantiated from a user-defined C structure.

As discussed in Section 1.1, PGM permits a user to
define his own PGM family base types. PGMT is

written in C++. In the PGMT environment, users can
define their own PGM base types by writing C++
classes. An MPI datatype must be created for each
user-defined C++ class. The tool C++2MPI automates
the process of creating an MPI datatype for a given
C++ class.

2: Automatic MPI Datatype Generation

2.1: Previous work.

The team of J. E. Devaney at National Institute of
Standards and Technology developed two tools [4, 5]
that facilitate the use of data structures in MPI.
AutoMap is a utility that creates MPI types from C
data structures. AutoLink is an MPI library that
automates two functions: the generation of MPI data
types, and the sending and receiving of dynamic data
structures. The MPI data types are generated by
running AutoMap on the program code.

2.2: C++2MPI

C++2MPI is a tool that creates MPI data types from
C++ data structures. In C++, a p r a g m a is an
implementation-dependent preprocessing directive. A
user requests an MPI datatype for a user-defined class
by inserting the pragma MPI_START in front of the
class definition, and the pragma MPI_END at the end.
MPI_END can be omitted if the end of the class
definition coincides with the end of the file.

The tool creates two files, C++2MPI.h and
C++2MPI.a. If an MPI datatype is requested for a
user-defined datatype, then the file C++2MPI.h will
contain a prototype (i.e. declaration) for the generated
function which will build the derived datatype.
C++2MPI.h will also include a declaration for a
variable of type MPI_Datatype. The address of this
variable will be passed as an argument to the function,
and initialized as a handle to the derived datatype
when the function executes. The output file
C++2MPI.a is a library containing the compiled
functions for the prototypes defined in C++2MPI.h.

The data members of a user-defined type for which an
MPI datatype is requested may be (i) any predefined C
datatype which has a corresponding MPI predefined
data type, (ii) a different user-defined data type, or
(iii) an array of the datatypes mentioned in (i) or (ii).
Pointer types and static data members are not allowed.
Figure 2 illustrates sample input and output files for
C++2MPI. C++2MPI.cpp contains the function for
building the derived datatype; this function is
compiled and archived within C++2MPI.a.

2.3 Implementation of C++2MPI.

C++ has an ambiguous grammar in the sense that
LR(k) analysis for any fixed value of k is not
sufficient to remove the ambiguity. One example is
the "typedef vs. identifier" conflict. A standard
solution to this problem is to give the lexical phase
access to the C++ symbol table. Another example is
the "declaration vs. expression" ambiguity which
requires an arbitrary amount of look-ahead. These
problems and the template construct make creating a
C++ parser using the traditional YACC/LEX
approach a very difficult task [6]. C++2MPI is a
modified version of John Lilley's C++ parser. Lilley's
parser uses the Purdue Compiler Construction Tool
Set (PCCTS). Both Lilley's parser, PCCTS and the
C++ grammar conceived in conjunction with NeXT
Computer Inc. are in the public-domain.

PCCTS [7] is a set of software tools which facilitates
the implementation of compilers and other translation
systems. These tools currently include ANTLR
(Another Tool for Language Recognition) and DLG
(DFA-based Lexical analyzer Generator). In many
ways, PCCTS is similar to a highly integrated version
of YACC [8] and LEX [9], where ANTLR (ANother
Tool for Language Recognition) corresponds to
YACC and DLG (DFA-based Lexical analyzer
Generator) functions like LEX. Both tools generate
parsers from a BNF-like grammar description.
However, PCCTS has many additional features
which make it easier to use for a wider range of
translation problems. PCCTS grammars contain
specifications for lexical and syntactic analysis,
intermediate-form construction, and error reporting.
Rules may employ Extended Backus Naur Form
(EBNF) grammar constructs and may also define
parameters, return values and local variables.
Languages described in PCCTS are recognized via

/////////////////////// file C++2MPI.h //////////////////////////

#ifndef CPP2MPI
#define CPP2MPI

void AIT_build_demo1_MPI_datatype(MPI_Datatype
*ptr_tuple);
static MPI_Datatype demo1_MPI_Handle;

#endif
/////////////////////// file C++2MPI.cpp ////////////////////////

#include "mpi.h"
#include "demo1.h"
#include "C++2MPI.h"

// Build an MPI Datatype for the type 'demo1'
void AIT_build_demo1_MPI_datatype(MPI_Datatype
*ptr_tuple)
{
 demo1 object;

// The number of intrinsic elements in each "block”
 // of the new type
 int block_lengths[3];

 // Displacement of each element from the start of the
new type
 MPI_Aint displacements[3];

 // MPI data types for the successive elements
 MPI_Datatype typelist[3];

 // Used for calculating displacements
 MPI_Aint start_address;
 MPI_Aint address;

Figure 2: Automatic generation of MPI Datatypes for a

user-defined C++ class.

// program continued ...

 // If one of the datatypes is a vector,
 // it has multiple elements per block

 block_lengths[0] = block_lengths[1]
 = block_lengths[2] = 1;

 // Define the typelist
 typelist[0] = MPI_INT;
 typelist[1] = MPI_INT;
 typelist[2] = MPI_DOUBLE;

// Calculate displacement for each member
// by subtracting the start address from the
// member address

 MPI_Address(&object.x1,
&start_address);
 displacements[0] = 0;

 MPI_Address(&object.x2, &address);
 displacements[1] = address - start_address;

 MPI_Address(&object.z, &address);
 displacements[2] = address - start_address;

 // Build and commit the derived datatype
 MPI_Type_struct(3, block_lengths,

displacements, typelist, ptr_tuple);
 MPI_Type_commit(ptr_tuple);

} // end AIT_build_demo1_MPI_datatype()

The user
specifies his
datatype as a
C++ class

//file

demo1.h

#pragma

MPI_START

class demo1{

 public:

 int x1;

 int x2;

 double z;
};

Strong LL(k) parsers constructed in pure,
human-readable, C code. As a result, PCCTS
compilers can be traced and debugged with standard
C tools.

The parser developed by John Lilley is based on a
C++ grammar written by S. Srinivasan, T. Parr, and
R. Quong. J. Lilley added some extra features such as
a full ANSI preprocessor, complete type and
declaration information, nested scopes, and
STL-based symbol tables. The basic difference
between the C++2MPI tool and Lilley's parser is the
creation of the MPI class as a super-class of the
parser, scanner and token classes in Lilley's parser.

The core of the C++2MPI tool is a function which
builds the MPI datatypes denoted by user-defined
C++ classes. This function should be invoked for any
class or instantiation of a templated class for which a
corresponding MPI data type is needed. Since Lilley's
parser reparses the class template for any
instantiation of the templated class, it is sufficient to
invoke this function for any class-specifier in the
C++ source code. The function has two arguments.
The first is a reference to the type describing a
requested class and the second is a reference to the
scope in which the class is declared. Generating the
body of this function requires access to the list of its
base classes, the list of its members and their types.
All this information can be found by using different
operators from the symbol table built by the parser.

2.3.1: Special cases

- access to private data members In order to create
an MPI data type, the displacement of each data
member in the user-defined type must be calculated.
This is done by using the MPI_address function. To
get access to private and protected members, the tool
makes all memory specifiers public in a copy of the
code which is used to create an archive. This has no
impact on the user's source code since any access
violation will be detected by the compiler.

- templates For each instantiation of a templated
class, C++2MPI generates a function to build the
corresponding MPI datatype. For example:

// User-defined templated class
#pragma MPI_START template <class T> class Nemo
{public: T x; T y;};

// User-defined instantiations of templated classes
typedef Nemo<int> NI;
typedef Nemo<float> NF;

// Prototypes for functions generated by C++2MPI

void build_Nemo_int_MPI_datatype(MPI_Datatype
ptr_tuple) { / ... */ };
void build_Nemo_float_MPI_datatype(MPI_Datatype
ptr_tuple){ / ... */ };

- derived classes In order to build an MPI datatype
for a derived class, it is necessary to build an MPI
datatype for the base class itself. One member of the
derived class will represent the base class members.
The displacement of this member is computed with a
dynamic cast. The following partial example
demonstrates this approach:

USER-DEFINED DERIVED C++ CLASS:

#pragma MPI_START

class base_v {

public:

 int x1;
 base_v(int in1 = 0) { x1 = in1; }

};

class derived_v : public base_v {

public:

 int y1;
 double z1;

derived_v(int in1 = 0, int in2 = 0, double in3 = 0.0) :

base_v(in1) {

 y1 = in2;

 z1 = in3; } };

C++2MPI-GENERATED FUNCTIONS FOR
CREATING THE MPI DATATYPES :

 // I. Function to build an MPI Datatype 'base_v'

void build_base_v_MPI_datatype(MPI_Datatype
*ptr_tuple) { // ... }

 // II. Function to build an MPI Datatype 'derived_v'

void AIT_build_derived_v_MPI_datatype(MPI_Datatype

*ptr_tuple) {

derived_v object;

 // ...

 // IIa. Define the typelist

 // ...

build_base_v_MPI_datatype(&base_v_MPI_Type);

typelist[2] = base_v_MPI_Type;

// IIb. Calculate displacement for each member by

// subtracting the start address from the member address

MPI_Address(&object.y1, &start_address);

displacements[0] = 0;
// ...

MPI_Address(dynamic_cast(&object), &address);

displacements[2] = address - start_address;

// ... }

// End derived class example

3: PGMT Integration

C++2MPI also generates an auxiliary file which
defines an STL vector of structures. There is one
structure defined for each user-defined type (i.e.
class) provided by the user. Each structure has two
components: the name of the user-defined type (i.e.
class name) and the address of the function used to
build the corresponding MPI datatype. For example,
if a user defines a class named complex, the two
components of the corresponding structure will be:

(1) string("complex");
(2) &build_complex_MPI_datatype;

T h e f i r s t t i m e t h e f u n c t i o n
build_complex_MPI_datatype() is called it builds the
MPI datatype for the user-defined class complex, and
returns an MPI handle of type MPI_Datatype [3]. On
subsequent calls to build_complex_MPI_datatype,
the function returns the correct value of the MPI
handle without rebuilding the MPI datatype.

PGMT uses the vector of structures to build an STL
associative map. The map keys are the class names,
and the values returned are the function addresses.
The map also includes functions which return the
predefined MPI datatypes (handles) for the basic C++
arithmetic types. For example, int is the key to a

function which returns the value of MPI_INT. The
associative map is accessed via a function call
generated by the PGMT GSF-to-C++ translator.

4: Summary and Conclusions

The Message Passing Interface 1.1 (MPI 1.1)
standard defines a standard library of
message-passing functions for parallel and distributed
computing. MPI includes functions for building the
user-defined MPI datatypes required for sending and
receiving instances of user-defined C structures.

In this paper, we discuss a new software tool called
C++2MPI. C++2MPI automatically generates MPI
derived datatypes corresponding to C++ classes, as
well as generating derived datatypes for standard C
structures. C++2MPI accepts one or more
user-defined C++ classes as inputs, and generates and
compiles a C program which will create the
corresponding user-defined MPI datatype. An MPI
handle to the datatype is returned to the calling
program. C++2MPI can generate data types for
derived classes, for partially and fully-specialized
templated classes, and for classes with private data
members.

The Processing Graph Method (PGM) is a data-flow
method for programming parallel processors. The
integration of C++2MPI with the Processing Graph
Method Tool (PGMT) is discussed. PGM and PGMT
were developed at the Naval Research Laboratory.

Acknowledgements: We wish to acknowledge
the contributions and suggestions of David J. Kaplan,
Richard S. Stevens, and David M. Armoza to the
work reported in this paper.

References

[1.] Kaplan, David J, "An Introduction to the Processing Graph Method," Presented Monday, March 24, 1997 at the International
Conference and Workshop on Engineering of Computer Based Systems Hosted by IEEE Computer Society Technical Committee
on Engineering of Computer Based Systems and The University of Arizona Electrical and Computer Engineering Department.
[2.] Kaplan, D., and R. Stevens, "Processing Graph Method 2.0 Semantics," Naval Research Laboratory, 15 Sept. 1995.
See http://www.ait.nrl.navy.mil/pgmt/ for documentation about PGM and the Processing Graph Method Tool.
[3.] MPI: A Message-Passing Interface Standard, Message Passing Interface Forum, 12 June 1995.
[4.] J.E. Devaney, M. Michel, J. Peeters, E. Baland, "AutoMap: A Data Structures Compiler for the Automatic Generation of
MPI Data Structures Directly From C Code", NIST, 1997.
[5.] M. Michel, D.S. Goujon, J. Peeters, J.E. Devaney, "AutoMap & AutoLink: Tools for communicating complex data-structures
using MPI", Proc. CANPC'98.
[6.] J. Lilley, "John Lilley's PCCTS-Based LL(1) C++ Parser", http://www.empathy.com/pccts/cppgrammar_unix.tar.gz
[7.] Terence J. Parr, Russell W. Quong, "ANTLR: A Predicated-LL(k) Parser Generator". Software Practice & Experience 25(7):
789-810 (1995).
[8.] Stephen C. Johnson, "YACC: Yet Another Compiler-Compiler". Bell Laboratories, Murray Hill, NJ, 1978.
[9.] M. E. Lesk, "LEX -- a Lexical Analyzer Generator". CSTR 39, Bell Laboratories, Murray Hill, NJ, 1975.

